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Recently, Razborov obtained superpolynomial lower bounds for monotone circuits that
tect cliques in graphs. In particular, Razborov showed that detecting cliques of size s in a graph
h m vertices requires monotone circuits of size Q(m*/(log m)**) for fixed s, and size m2 28 for

v {log m/4).

In this paper we modify the arguments of Razborov to obtain exponential lower bounds for
onotone circuits. In particular, detecting cliques of size (1/4) (m/log m)** requires monotone circuits
[ size exp (2(Gnflog m)t/ 5‘)). For fixed s, any monotone circuit that detects cliques of size s requires
‘m*j(log m)*) AND gates. We show that even a very rough approximation of the maximum clique

¢ of a graph requires superpolynomial size monotone circuits, and give lower bounds for some
ner Bootean functions. Our best lower bound for an NP function of n variables is exp (€ (114 -
(log 7)), improving a recent result of exp (2 (#/8-%)) due to Andreev.

1. Introduction

In 1949, Shannon [14] showed that almost all Boolean functions have expo-
‘ntially large circuit complexity. Unfortunately, the best circuit lower bound for a
oblem in NP is only 3# (Blum [4]). Circuit lower bounds are important since a

uperpolynomial circnit lower bound for a problem in NP implies that Pz NP.

Because lower bounds for general circuits seem difficult to prove, many people

have studied restricted circuit models. One restriction is to consider only monotone
circuits, with AND gates and OR gates allowed but no NOT gates allowed. Until
recently, however, the best known lower bound for the monotone circuit complexity
of a single monotone problem in NP was a 4n lower bound (Tiekenheinrich [16]).
Wegener [18] gave an Q(n?/log n) lower bound for simultaneously computing a set
of 1 Boolean functions (in NP) of n variables.

Recently, Razborov [12] achieved a major development, namely obtaining su-
‘polynomial lower bounds for monotone circuits. For a Boolean function f; let
- "(f) denote the monotone circuit complexity of /. For 1=s=m, let CLIQUE(m, 5)

e the function of n= (';] Boolean variables representing the edges of an undirected
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graph G on m vertices, whose value is 1 iff G contains an s-clique. In [12] Razborov
shows that
L*(CLIQUE(m, s)) = m*(s*¢* In m) ™%,
and concludes that for fixed s
. 3 m* ]
(1. L*(CLIQUE(m, s)) Q[——(log E)

and that for s= [% In mJ

L*(CLIQUE(m, s5)) = m2Uosm),
Here we modify the arguments of [12] to improve the lower bounds. Our main
results are exponential lower bounds for the monotone circuit complexity of several
Boolean functions. In particular we show that

b

1 m s +1)2
L+(CL1Q UE(”’T, S)) = '8‘ {W}

and thus for s=|{m/(8 log nm))*?| we have
L*(CLIQUE(m, 5)) = exp (Q((m/log m)'/3)).

The method also supplies lower bounds on the monotone complexity of Boo-
lean functions that approximate the maximum clique size of a graph. For example,

i . m . .
we show that if /is any Boolean function of n= [2) variables representing the edges

of a graph G whose value is 0if G contains no clique of size [(log m)*]. 1s 1 if G contains
a clique of size | m/(8(log m)*)|. and is arbitrary otherwise, then

L+ (f) = ,nﬂ(log m)'

We also improve (1.1) and show that for fixed s

+ _ m
L*(CLIQUE(m, s)) = Q ((log m)SJ X

In fact, we show that any monotone circuit that computes CLIQUE (m, s) (for fixed s)
contains at least Q(m*/(log m)*) AND gates.

As mentioned above, our methods are basically a modification of those appear-
ing (without proof) in [12]; however, our paper is self-contained.

Razborov obtains his lower bound for the monotone complexity L*(f) of a
Boolean function fin the following two steps:

(i) For every lattice K from a properly defined family of lattices, he defines
the distance ¢(f, K) from f'to K and shows that

(1.2) L*(f) = o(f, K)-

(ii) For a specific function f (e.g., f=CLIQUE(m, s)) he defines an appro-
priate lattice K and shows that o(f, K) is large.

Our improved bounds are obtained by choosing different lattices in the second
step, which are modified versions of Razborov’s lattices.
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Very recently, Andreev [2] has obtained exponential lower bounds for the
monotone circuit complexity of several problems in NP. His methods are different,
though very similar, to those of Razborov. The best lower bound obtained by And-
reev for a function of n variables in NP is exp (Q(n'/®~*)), whereas our best bound
mentioned above is exp (2(n'/*~%)). We also note that the methods of [2] do not
seem to supply good lower bounds for CLIQUE(m, s) for fixed s. Applying Raz-
borov’s methods together with our ideas to one of the functions g of n variables
considered by Andreev, we can improve Andreev’s lower bound and show that
L*(g)=exp (Q(n'/* - (log n)%)).

The paper is organized as follows. In Section 2 we describe the relatively easy
step (i) mentioned above, including Razborov’s proof of inequality (1.2). In Section
3 we obtain, using an appropriate lattice, exponential lower bounds for the mono-
tone complexity of the clique function. In Section 4 we obtain the exp (Q(n'/*-
- (log n)*%)) for Andreev’s function g. Section 5 contains lower bounds for the
monotone complexity of some other Boolean functions.

Throughout this paper, the function log x denotes logarithm base 2 of x,
whereas In x denotes logarithm base e of x.

2. Monotone complexity and lattices

For nz=1, let B, denote the n-dimensional cube {0, 1}". Let P(B,) denote
the power set of B,. The power set P(B,) is a lattice with respect to union and inter-
section. Let % < P(B,) be the sublattice of P(B,) consisting of all monotone families
of vectors in B,, i.e., & is the set of all FC B, such that

Vuc FYve€B,[u = v= veF].

For a monotone function f of n Boolean variables, put A(f)={v€¢B,:f(v)=1}.
Clearly if f'is a monotone function, then A(f)€.#, and if /'and g are monotone
functions, then A(fVg)=A(f)JA(g) and A(fAg)=A(HNA(g).

A subposet K of £ is a legitimate lattice if

(1) it is a lattice (i.e. every pair M, NEK has a join, denoted by M| N,
and a meet, denoted by MT1N), and

(i) A(x1), A(xs), ..., A(x,), AQ)(=9), A(1)(=B,)eK.

For M, NeK, define §(M,N)=(MON)—(MUN) and d(M,N)=
=(MNN)—(MTIN).

For a monotone function fand a lattice K, the distance from fto K is the mi-
nimum # such that there are M, M, Ny, ..., M,, N,cK satisfying

@.1) M A(DU U so(M,, V)
i=1

and

2.2) A() S MU ) 6. (M, N,
i=1

Denote this distance by ¢(f, K).
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Theorem 2.1 ([12]). For every monotone function [ and every legitimate lattice K, we
have L*(f)=o(f, K).

Proof. Put 1=L*(f) and consider a monotone straight-line program P for comput-
ing fusing 7 operations {each of which 15 either an V or an A). Let f; and g; be the
operands of the ith operation, for 1=i=1.

Let M be the element of K obtained by running the program P in K, replacing
each V by (1, each A by M, each x; by A(x;), each 0 by 4(0), and each 1 by A4(1).
Similarly, let M; and N, be those elements of K obtained by running the parts of P
for computing f; and g;, respectively, in K. We prove, by induction on ¢, that (2.1)
and (2.2) hold. For =0, fis either x; or 0 or 1, and M=A(f) so the result is triv-
ial. Assuming the result for r—1, we prove it for ¢. Suppose, for example, that
f=fVg,. By the induction hypothesis,

1—1
M, S AHU U 6L (M. N)
i=1
and
t—1
N, S A@gIU U 6,(M;, N)).
i=1

Therefore
M=M,N,=MUNUS (M, N)

S AUAEIU U 6., N
= AU U 6,08, M),
which is (2.1). -

Equation (2.2) is even easier to prove in this case. By the induction hypothesis

r—1
AN EMU )6 (M, N)
i=1

and
t-1
A(g) & MU U o (M, N).
i=1
Thus

A(f) = AGUAG) E MUNU U 5,01, N
i=1

t—1 t
SWMUuN)U U (M, N)EMU U 6 (M, Ny,
i=1 i=1
which is (2.2).
The case f=f,Ag, is proved similarly, so the proof is complete. {Notice that,
the proof actually implies a slightly stronger result, namely:
MC A(NHUUS (M, N): 1 =i =t the ith operation is an V},
and
A) EMUUJ (M, N): 1 =i =1, the ith operation is an A}. §
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3. The cligue problem
3.1. The lattice

In this section we define a legitimate lattice K such that ¢(CLIQUE((m, s), K)
is large. This will supply, by Theorem 2.1, lower bounds for the monotone circuit
complexity of CLIQUE(m, s). As mentioned above, our lattice is only a modifica-
tion of the lattice given in [12}. Throughout this section, we always assume that m
is large enough (e.g., assuming m=1000 is sufficient for all our purposes).

Let /=2 and r be numbers to be chosen later. For not necessarily distinct
sets W, Wy, W,, ..., W,, we say that Wy, W, ..., W, imply W (and write Wy, W,, ...
e W= WY iff

(1) The sets W, Wy, W,, ..., W, all have cardinality at most /, and

(i) W,OW;SW for all I=i<j=r.

Notice that if W, S W and [W|=1, then r copies of W, imply W.If A is a
collection of sets and W is a set, we say that A implies W (and write 4 W) iff
there exist Wy, W,, ..., W,£ A that imply W. A collection A is closed iff YW[AI-W =
=>W¢€A]. The closure of a collection A, denoted by A*, is given by A*=N{B:4C
C B and B is closed}. One can easily check that * is a closure relation (i.e., 4Z A%,
ACSB implies A*CB*, and (4*)*=4%).

For a technical reason, it is convenient to assume, in this section only (and not
in Section 4), that if 4 is a closed set having a member of cardinality 1, then it also
has the empty set as a member. Thus in this section we agree that A if there is a
set WeA such that |W|=1.

m
2

Put ¥={1,2,...,m}. Our n:[ ]

spond to the edges of a graph on V. For a collection A of subsets of ¥, let [4] denote
the family of all graphs on V that contain a clique on some W¢ A. Each such graph
is represented by a characteristic vector on the set of n possible edges, i.e., by an
element of B,. Thus [4] is an element of the lattice %, defined in Section 2. Set
v ()={WCV:|W|=l}. Finally define K(m,r,)={[4]:4 is a closed subset of
v (1)}

} The following lemma asserts that K(m, r, [) is a legitimate lattice. We omit its
straightforward proof.

Boolean variables x,, x,, ..., x, corre-

Lemma 3.1. X is a legitimate lattice in which the join ) and the meet [ are given
by [AlL[BI=[(AUB)*] and [A]01[B)=[ANB]. |

3.2. Some combinatorial lemmas

Let & be a family of sets. We say that & has property P(r, k) if

(1) every set WeF has cardinality at most k, and

(ii) there are no (not necessarily distinct) W, Wy, Wy, ..., W, €F and USW
such that W, NW,CS U for all 1=i<j=r (ie., F+U).

Let A(r, k) denote the maximum possible cardinality of a family & that has
property P(r, k).
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Lemma 3.2. For all ¥r=2 and k=0, we have h(r, k)=(— 1)

Proof. We first show that h(r, k)=(r—1)*. Let S|, S,, ...s S, be k pairwise disjoint
sets, each of cardinality r—1. Define % = {WCU S v:[WﬂSl~l} Clearly

1% |=(— D" One can easily check that & has plopPrty P(r, k). Indeed if W, W1,
Wa, ... W,£F and USW, then UNS;=0 for some /i with 1=i/=k. But since
[S!—i—] there are, by the pigeonhole principle, some 1=p<g=r such that
W,NW,NS;=0. But this means that W, ,NW, LU, so & has property P(r, k).

We next prove that h(r, k)= (7—1)" by 1nduct10n on r. For r=2, the resuit
is trivial; for if & contains two sets W, and W,, define U= WlﬂWg Either US W,
(and then take W=W;)or U&W, (and then W=W,), so & does not have prop-
erty P(r, k).

Assuming the result for r— 1, we prove it for ». Let # be a family of sets having
property P(r, k). We must show that |#|=(r—1)*. Suppose D¢F. For each
C<D, put

Fe=W-C:WeF and WND = C}

We claim that & ¢ has property P(r—1, k—|C]). Indeed, suppose W', Wi W, ...
s Wi €F ¢ and U'SW’ satisfy W OW,EU’ for all l=i<jzr—1. Let
W=W'UC and U=U'UCSW. Define W=WUC (for l=i=r—1) and
W,=D. This system satisfies W,NW,SU for all 1=i<j=r, contradicting the
fact that & has property P(r, k). Thus 5‘7 has property P(r—1, k—|C|). The induc-
tion hypothesis says that | & |=(r—2)k- 'C', hence

|7l = 2Tl = 3 (r=2)-0
CED " ¢Ep
|2J D i g k o
=& [l il](”‘z)k" =2 [ ; ](,~—2)"-'
Z(l‘*l)k_

This completes the proof. |

Corollary 3.3. Let A be a closed set. Then for all k=1 there are at most (r—1)*
minimal elements (with respect to containment) of A of cardinality at most k.

Proof. Let & be the family of minimal elements of A of cardinality at most k.
Clearly # has property P(r, k). Indeed if W, W, , W, .., W, €5 and USW
satlsfy W.NAW;SU for all l=i<j=r, then Wy, Wy, ..., W,=U. Thus UcA
since A4 1s closed But U¢€ A4 contradicts the minimality of W so & must have prop-
erty P(r, k). The result now follows from Lemma 3.2. (The construction given in
the proof of Lemma 3.2 can be used to show that Corollary 3.3 is best possible.)

We now show that for every collection of sets C, the closure C* can be con-
structed from C using a reasonably small number of operations. For a collection C,
put C'={W¢C: C+W}. Notice that C'=0 iff C=C”, but that in general C’
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need not equal C*—C. Consider the following algorithm for going from C to C*:

algorithm Closure (C)
Cy<C
i<0
while C; not ciosed do
W 1< any minimal element of C;
Cif1~CUW: W, SW and W=/}
i<i+1
end while
output C;
end algorithm

Clearly, since everything is finite, the above closure algorithm must terminate

and produce C*. In fact, for the lattice of subsection 3.1, since each W, is distinct,
{
the number of iterations is bounded by [ ()= > (’Z]ém’. Below we give a
K=o\

more complicated argument (Lemma 3.5) which improves this bound. Although the
weaker bound is sufficient for all our purposes, the stronger bound may be useful
sometimes.

A family of ¢ sets W,, W,, ..., W, 1s called a sunflower with center W and ¢
petals Wi, W,, .., W, if W,NW,;=W forall 1si<j=t. The following result was
proved by Erdds and Rado.

Lemma 3.4. ([6]). Let & be a fumily of sets, each of cardinality at most 1. If [F|=>
=[1(t—1), then F contains a sunflower with t petals.

Using the Erdds—Rado result, it is not too difficult to show that for every
collection C, the closure algorithm terminates after at most /!(r+1)! iterations,
since the system {W,, W,, ..., W,} defined in the algorithm cannot contain a sun-
flower with #+2 petals. We can in fact improve this bound using similar arguments
to those used in the proof of Lemma 3.2.

Lemma 3.5. For every collection C, the closure algorithm terminates after at most
2+t iterations.
Proof. Let S=(W,, W,, ..., W,) be a sequence of distinct sets. We say that §
has property T'(r, [) if

(1) every set W, has cardinality at most /, and

(i) there are no i=i,=...=/,<(,y; and USW,  suchthat W, NW, S
CU for all 1=j<k=r (e, W, W, ... W; - U).

Notice that if S=(W,, W,, ..., W,) is the sequence of W /s produced by
our algorithm for obtaining C* from C, then S has property T'(r, I), since otherwise

we get a contradiction to the minimality of W, _ when it was added. Therefore, to
prove Lemma 3.5, it suffices to prove:

Claim: Suppose r=1 and 1=0. If S=W,,W,,...,W,) has property T(r,1),
then p=2r.

Proof of Claim. By induction on ». Consider first the case r=1. Suppose that S
has property T(1,]) and p=2. Notice that H{~8, since r=1 makes - trivial.



8 N. ALON, R. B. BOPPANA

Since the W, are distinct, either W, or W is nonempty. But if W,=0, then W, -0¢
& W,, contradicting the assumption that S has property T(1, /). Similarly W,=0
contradicts S having property 7°(1, /). This proves the claim for r=1.

Assuming the result for r— 1, we prove it for r. Suppose S=(W,, W,, ..., W)
has property T(r,[). Put D=W,. For each CCD, let S; be the sequence of all
sets W;—C such that W, D=C, appearing in the same order that the W; appear
in S. As in the proof of Lemma 3.2, it is easy to check that S has property
T(r—1,1—|C|). By the induction hypothesis |Sc|=2(—1)*"1¢!, and thus

|2l
si= Fisd=2 > ("

cSp =0

](;-—1)H = 2,

This completes the proof. B

We conclude this subsection with two probabilistic lemmas. Recall from
Section 3.1 that ¥F={1,2, ..., m}. By a random g-coloring O of ¥V, we mean a
random choice of one of the g™ possible colorings of ¥ using the colors {1, 2, ..., g},
where each such choice is equally likely. We say that WV is properly colored
(PC for short) by O if each vertex of W has a different color.

Lemma 3.6. Suppose that ASY () and A-W. Let O be a random g-coloring of V.
Then

Pr[W is PC by O and no set in A is PC by O] :_z[l i {Chal))

...I(g~l+l))r.
g

Proof. AW means that there are W, W,, ..., W€ A4 such that W, W,, ..., W,
- W. We have

Pr[W is PC and no set in 4 is PC) =
= Pr[Wis PC and W, W,, .., W, are not PC]
= PrW, W,, ... W, are not PC|W is PC]

= [[ Pr[W,; is not PC|W is PC],
i=1

where the last equality holds since, by the definition of the implication W, W,, ...
.., W, W, the events {W; is not PC|W is PC} are mutually independent. Let
pi=IW,NW| and ¢q,=|W,—W]|. Clearly p,+q,=|W|=l, so

Pr[W, is not PCIW is PC]=1—PrW, is PC |W is PC]
. le=p)g—pi=D ... (g—pi—gi+ D

g
1 _Ce=p)g—pi—1) ... (g—1+1)
= e
=1 glg—1)...(g—1+1)
= : )

Jo4
>

This completes the proof. [J
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For a g-coloring O of V, let G(O) denote the complete g-partite graph on ¥
whose edges are all pairs {i, /} with O@)=0()).

Lemma 3.7. Suppose CESY({), and let O be a random g-coloring of V. Then
Ag—1+1) ]

)

Pr{G(O)E[CH-ICT] = (2#)(1 Al =
Proof. Consider the closure algorithm for obtaining C* from C, defined just before
Lemma 3.5. By Lemma 3.5, the algorlthm must halt after p=24 iterations. Now
G(O)E[C*]—[C] means thdt some set in C* is PC by O but no set in C is PC by O.
This is equivalent to: some W, of the algorithm (for 1=i=p) is PC but not set in
C is PC. This in turn is equwalent to the disjoint union of the p events (for I=i=p)

E; =W, is PC and no set in CU{W,W,, .., W,_} is PC.

The definition of the algorithm implies that CU{W,, W,, .., W,_,}-W,, so by
Lemma 3.6, we have

[, glg=D..(g=l+DY
Pr[Ei]:[l - ) '
Hence
PriG(OY[C*1-[Cl] = é)’ Pr[E]
i=1
=, gle=1..(=1+DY
:p[l gl J s

2,z(l_g(g—l)--~

g~l+l)]'
8

I

[]

2

as required. J
3.3. The exponential lower bound

Recall that CLIQUE(m, s) is the function of n:(g’) Boolean variables,

representing the edges of a graph on ¥V'={l, 2, ..., m}, whose value is 1 iff G con-
tains an s-clique.

Lemma 3.8. Suppose 3§s§4l (mflog my*3, and let 1=[Vs| and r=[4Vslogm].
Then the distance from f=CLIQUE(m, s) to the lattice K=K(m,r,]) satisfies

1 m ]f(’“)/?‘ 1 ( m J(Vs—+l)/‘_’.
olf. K) = @(s(r-l) 8 U4slogm ’

Proof. Let t=p(f, K). We must show that

1 m I(-+1)/21
3.1) - _[S__(r_l)] .

v
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By the definition of o(f, K), there are M, M, N,, ..., M,, N¢K such that (2.1)
and (2.2) both hold. Put M=][A], where A4 is a closed subset of ¥"(!). We consider
two possible cases.

Case 1. M is not the set of all graphs.
Notice that by (2.2), each s-clique must belong to MU 6, ,(M;, N).
i=1

To prove (3.1), it is clearly enough to prove the following two claims:

Claim 1. M contains at most one-half of the [ s] possible s-cligues.

Claim 2. Each §~(M;, N)) contains at most 4-(s(r—1)/m)jiu+d/21. ”,7 of the s-
8
cliques.

Proof of Claim 1. Notice that since M is not the set of all graphs, each element of A4
has cardinality at least 2. Each s-clique that belongs to M contains some minimal
element of 4. By Corollary 3.3, for each 2:= k=1, the number of minimal elements of
cardinality k& of A4 is at most (— 1)*. Each such element is contained in precisely

[;Sn_—]l:] of the s-cliques. Thus the total number of s-cliques that belong to M is

é("—l)k('n_kJ = le’(l’wl)"[m] (i]h

k=2 s—k

at most

|
—_— ——
[ w 3
Nem—"
a =
1§ ~
] 14
—
|73
7~
-
=1
=
| ————

Proof of Claim 2. Put M;=[4;] and N;=[B;], where 4, and B; arc closed subsets
of ¥'(/). By Lemma 3.1,

5,—|(Mia N) = (M,NN)—(M;T1N) = [4]1NB]1—[4;NB,].

Thus if an s-clique on a set Z of vertices belongs to §(M;, N)), then Z contains a
minimal element X€A4; and a minimal element Y¢B,;, but no element of A;NB;.
If |[XUY|=l, then, since 4, and B; are closed, the set XUYCZ is an element of
A;NB;, which is impossible. Thus |[XUY]|=>1, so either X or ¥ (or both) have car-
dinality at least [(/-+1)/2]. We therefore conclude that each s-clique belonging to
dn(M;, N;) contains a minimal element of cardinality k=[({+1)/2] of either A4,
or B, (or both). By Corollary 3.3, the number of such elements is at most 2(r— 1)%,

each of which is contained in [';1://:] of the s-cliques. Hence the total number of
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s-cliques that belong to d5(M;, N,) is at most

!

—k m ! s(r=DY
207 ¢) =2 (V) L 2. )
k=l’(l§)f2l ( ) s~k N k=l(HZ-;)f2l m
2 (m] (S(r—' l)][(l+l)I2] o [l]l
S m i=0 2

(),

This completes the proof of Claim 2, and thus the proof of Case 1. J

Case 2. M is the set of all graphs.
t
In this case, by (2.1), every (s— 1)-partite graph on ¥V belongs to | .,(M;,

i=1
N,), since these graphs do not contain any s-cliques. Put M;=[4;] and N,=[B],
where A4; and B; are closed subsets of ¥"({). By Lemma 3.1,

S (M;, N) = (ML N) — (MU Ny = [(4;UB) - ([4,1UIB;])
where C;=A4;UB; for 1=i=t. Suppose that ¢ violates (3.1), i.e., suppose

1 m f{1+1)/21
Sl UL sl

=3 [s(r-—l)] =m

Let O be a random (s— 1)-coloring of V. Then G (0) (defined just before Lemma 3.7)

is a complete (s— 1)-partite graph. By Lemma 3.7, for each fixed i such that 1=i=t,
we have

) _ G-DG=2)...s=VsDY
Pr[G(O)E[CH~[Ci] = (21 (1 - (s—1)lY¥sl )

2 [4Ystogml
= Vsl ( ]
=m 3

= mlfs1 -2

= m-Ms1,
Thus

t
Pr[G(0)e U (ICH-1CD] = m-s1 < 1,
i=1
so there is some G(O) that does not belong to Ltj {c-1cp= Cj o (M;, N)).
i=1 i=1

t
But this is a contradiction, since each (s— 1)-partite graph must belong to |J &, (M;,
i=1

N;). Hence (3.1) holds, and the assertion of the lemma follows. |
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Combining Theorem 2.1 with Lemma 3.8, we get the following theorem,
Theorem 3.9. If 3§s§%(m/log ¥, then

m ](y;+1)/2

S = lg(}/§+1)/2.
453 log m 8

L*(CLIQUE(m, 5)) = —81-[

1
In particular, for s= lz (mflog m)¥ 3] the monotone circuit complexity of CLIQUE (m, s)
is exp(Q((mflog m)'). 1

3.4. Approximating the maximum clique size

Theorem 3.9 says that a monotone circuit must be large to distinguish be-
tween graphs with maximum clique size less than s and graphs with maximum clique
size at least s. In this section we show that, for s,=s,, a monotone circuit must be
large to distinguish between graphs with maximum chique size less than s; and graphs
with maximum clique size at least §,, even for some s, .

For 1=s=s,=m, let F(m, s, 5,) denote the sct of all monotone functions /'

of (';] Boolean variables representing the edges of a graph G on V={1,2, ..., m},

such that the value of /is 0 if G contains no clique of size s, 15 1 if G contains a clique
of size s,, and is arbitrary otherwise. Notice that F(m, s, s)={CLIQUE (i, s)},
but that for s;<s, we have |F(m, sy, sp)|=>1.

Lemma 3.10. Suppose fc F(m, 51, s3), where 3=s5,=5, and Vs s,=mf(8 log m). Let
1=[Vs, | and r={4Vs, log m|. Then the distance from f to the lattice K=K(m, r, I)
satisfies

Y

If

. 1 m fa+net m (Vs, +1)/2
0= 5 (7 ) vy

s5(r—1) 7 E

Proof. The proof is very similar to that of Lemma 3.8. Let r=¢(f, K). We must
show that

1 m ) [(f+1)/21

By definition of ¢(/, K), there are M, M;, and N&K (for 1=i=¢) for which con-
ditions (2.1) and (2.2) hold. Put M=][4], and for 1=i=¢ put M;=]4;] and
N;=[By], where 4, 4;, and B, are closed subsets of #"(I). We consider two possible
cases.

4Ys s, logm

Y

Case 1. M is not the set of all graphs.
By (2.2), each s,-clique belongs to MU |J 6+(M;, N)), so (3.2) will follow
i=1
from the following two claims:

Claim 1. M contains at most one-half of the lsm] possible s, -cliques.
2
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Claim 2. Each 6-(M;, N;) contains at most 4-(sy(r— 1)/m)f(’+1)/2‘-(;21] of the
possible sy-cliques.

The proofs of these two claims are analogous to those given in the proof of
Lemma 3.8. This completes the proof of Case 1.

Case 2. M is the set of all graphs.

In this case, by (2.1), every complete (s,— 1)-partite graph on V belongs to
the set Ltj 3, (M;, N;). The proof that ¢ satisfies (3.2) for this case is identical to
the onelgilven in the proof of Lemma 3.8. |}

Lemma 3.10 and Theorem 2.1 imply the following.
Theorem 3.11. If fe F(m, sy, 5,), where 3=s,=s, and Vs,5,=m/(8logm), then

= iz(Vs_,»H)/‘z‘ 1

L+(f)zi( m JWEH)/? .

8 \dys; s, logm

We specify a special case of the last theorem separately.

. m . .
Corellary 3.12. Let f be a monotone function of [2] Boolean variables representing
the edges of a graph G on V=11, 2, ..., m}, and suppose the value of {'is 0 if G contains
no clique of size |(log m)*], is 1 if G contains a clique of size | m/(8 (log m)?)|, and is
arbitrary otherwise. Then the monotone circuit complexity of [ is m?Uet™ |

3.5. Small cliques

For fixed s=3, as m—oo, Theorem 3.9 can be improved using the lattice
K(m,r,) with I=5—1 and r=cse*logm (for some constant ¢>0). This (with
¢=2) is precisely the lattice used by Razborov in {12] to show that for fixed s

(3.3) L*(CLIQUE(m, 5)) = @ [(10;#)2]

Notice that LY (CLIQUE(m, 5))= O(#*), and thus (3.3) is not far from best possible.
In this section we improve (3.3) by replacing (log m)? by (log m)*. In fact, we show
that, for fixed s=3, every monotone circnit computing CLIQUE(m, 5) contains
Q(m*/(log m)®) AND gates.

Lemma 3.13. Define I=s5—1, and let M and N be two elements of the lattice K=.
=K(m, r, ). Then the number of s-cliques contained in 6 (M, N) is at most 2°-(r— 1.

Proof. Suppose M=[A] and N=[B], where 4 and B are closed subsets of ¥°(J).
By Lemma 3.1, we have

0_(M,N)=(MNN)—(MMN)=I[4A]N[B]-[4N B].
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If an s-clique on a set of vertices Z belongs to 6(M, N), then Z must contain
a minimal element X¢A and a minimal element Y¢B, but no element of ANB.
Hence [XUY|=s, for if [XUY|=s—1, then XUYZSZ would be an element of
ANB, which is impossible. Therefore the number of s-cliques in 6(M, N) is at most
the number of pairs (X, Y), where X is a minimal element of 4 and Y is a minimal
element of B such that [XUY|=s. Given a minimal element X of 4, define &F,=
={Y:Y is a minimal element of B and [XUY|=s}. For CCX, put Fy =
={Y-C:Ye%F,; and XNY=C}. One can easily check that &y . has property
P(r, s—|X]|), defined in the first paragraph of subsection 3.2. Indeed, if W, W, W,, ...
o WE€Fx ¢ and USW satisfy W,NW,SU for all 1=i<j=r, then W,UC,
w,UcC, ..., W ,UC+UUC. But this implies that UUCEB, contradicting the
minimality of WUC€EB. Hence, Lemma 3.2 says that |#, |=(—1)*"¥l and
thus |#,]|=21X1.(r—1)*~1%l. By Corollary 3.3, the number of minimal elements X
of A4 of cardinality & is at most (r—1)*. Thus the total number of pairs (X, ¥) of
the required type i1s at most

S =R = -1y 3 2

- 25(,,_ l)s’
and the proof is complete. |

1 .
Lemma 3.14. If 3§s£?log m, then every monotone circuit that computes the func-

tion CLIQUE (m1, s) contains either at least m®[(8s%¢* log m)* AND gates or at least
m® OR gates.

Proof. Let 1, and ¢, denote the number of AND gates and OR gates, respectively,
in a monotone circuit that computes f=CLIQUE(mn, s). Set K=K(m,r,[), where
I=5—1 and r=|4se* log m|. By the proof of Thecorem 2.1, there are M, M, Ny, ...
s My iys Ny €K such that

(3.4) AU S MU 1) 6 (M, N,
i=1
and
(3.5) M AN U s, V).
i=t;+1

Consider two possible cases.
Case 1. M is not the set of all graphs.

In this case one can easily check, as in the proof of Lemma 3.8, that M con-
tains at most one-half of the possible s-cligues. Hence, by (3.4) and Lemma 3.13,
we have

l{m < & m m*
h= 5( s ]/(2 (r=1¥) = 552r)* = (8s%e’logm)*’

and Case 1 is settled.
Case 2. M is the set of all graphs.
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1+t
In this case, by (3.5), every (s— 1)-partite graph on ¥ belongs to 1Uz o(M;,
i=t,+1
N). Put M;=[4;] and N,=[B], and let C;=4,UB; for #+1=i=+1t,.
Then, as in the proof of Theorem 3.8, we have & ,(M;, N)=[C{]—[C]. Let O
be a random (s— 1)-coloring of V. By Lemma 3.7, for each fixed i satisfying #;+1=
=i=t,+1t,, we have

Pr{G(O)CICH—[C]] = (27 [1 _(s(%_l)l)T'l]

=m(l—e ) =m™%,
ty+r,
If r,<m®, then Pr[G(O)¢ |J ([Cfl-[CD]=ty;m™*<1, so some G(O) does
=1, +1

t o+t
not belong to Uz 8 (M;, N;). But this is impossible, since G(O) is an (s—1)-

i=r,+1
partite graph. Thus 1, the number of OR gates in the circut, is at least m®, complet-
ing the proof of the lemma. J

The next simple lemma is interesting in its own right, showing that the number
of AND gates and OR gates in a circuit can always be somewhat balanced, without
increasing the complexity of the circuit. For example, exponential lower bounds on
monotone circuit complexity imply exponential lower bounds on both the nomber
of AND gates and the number of OR gates required.

Lemma 3.15. Let f be a monotone function of n Boolean variables, and suppose there
is a monotone circuit computing f that contains k AND gates. Then there is a monotone

circuit computing f that contains k AND gates and at most (k+1)(n—1)+ (kgl]

OR gates (the dual version of the statement holds as well).
Proof. Consider a monotone straight-line program for computing f, and let £, f3, ...

..., Jx be the k outputs of the k AND gates, in the order in which they are computed.
We first prove, by induction on /, that there is a monotone circuit that computes

fis fas --o» fi containing § AND gates and at most i(n—1)+ (5] OR gates. For i=1,

£ is an AND of two operands, each of which is either a constant or an OR of a
subset of {x;, x,, ..., x,}. One can easily check that these two operands can be com-
puted with at most n—1 OR gates, so the case i=1 is settled. Assuming the result
for i—1, let us prove it for i. The functions f;, fa, ..., f;_; can be computed, by the

induction hypothesis, using i—1 AND gates and at most (i—l)(n—1)+(l—21)

OR gates. The function f; is an AND of two operands, each of which is either a
constant or an OR of a subset of {x, x5, ..., x,}U {1, f2» .- fi_1}- These two oper-

ands can be computed with at most n+7—2 OR gates, and since (i—1)(n—1)+ (1_21]

+n+i—2=i-(n— 1)+(;_), the induction step is completed.
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Therefore f1, /5, ..., /i can be computed with a monotone circuit containing k

AND gates and at most k{n—1) + (]5] OR gates. The function fitself is either a cons-

tant or an OR of a subset of {x), Xa, ..., x,}U{/1, fa> ... fx} which can be computed
with at most n+k— 1 additional OR gates. The desired result follows. |

A guadratic function is a function fon n=2 variables of the form

Jx) = \ (aij/\xi/\xj)s

1=i<j=n

where the a;; are either O or 1. Bloniarz [3] shows that most quadratic functions f
satisfy L¥(f)=Q(n?/log n). Bloniarz also observes that all quadratic functions have
monotone circuits with only n—1 AND gates. Thus this example shows that Lemma
3.15 is tight up to a logarithmic factor.

The next theorem provides almost optimal lower bounds on the number of
AND gates for CLIQUE(m, 5), when s is fixed.

1 .
Theorem 3.16. I/ 3=. EZ]Og m, then every monotone circuil that computes the

Sfunction CLIQUE(n, s) contains at least nm®/(8s%¢* log m)* AND gates. In particular,
for each fixed s=3, the mumber of AND gates in any monotone circuit that computes
CLIQUE(m, s) is Q(m*/(log m)").

Proof. Suppose this is false, i.e., suppose there is a monotone circuit computing the
function CLIQUE(m, s) that contains k< m®/(8s%¢*log m)* AND gates. Then by
Lemma 3.15, there is also a monotone circuit computing CLIQUE (i, s) that contains

k AND gates and at most (k+1)- [(g’)— l)+(kg 1]<rn35 OR gates. This contra-

dicts Lemma 3.14, so our assumption was false and the theorem is proved. [
It is worth noting that, as is well known ([5], [9]), the nonmonotone circuit
. . m 9 AT .
complexity of CLIQUE((m, s) is O[M[[[Sm]]]:0(m~-5“/3‘), where M(r) is the
nonmonotone circuit complexity of Boolean matrix multiplication. Since it is easy
to check whether or not a graph G contains a triangle by squaring its adjacency matrix,
the last theorem implies that any monotone circuit that computes the Boolean square
of an m by m matrix contains Q(m3/(log n1)3) AND gates. Better results about the
monotone complexity of matrix multiplication appear in [8), [10], and [11].

4. A better lower bound for an NP problem

In this section we consider a problem in NP for which we obtain our largest
lower bound, Andreev {2] had previously given weaker bounds for this problem.

Let GF(g) denote the finite field with ¢ elements, where ¢ is a prime power.
Let G=(U,V,E) be a bipartite graph with U=GF(¢) and V=GF(g). Define
POLY (g, s) to be the function of n=¢* Boolean variables representing the edges of
G, whose value is 1 iff there is a polynomial p over GF(g) of degree at most s—1
such that Vi€ U[(i, p(i))€E]. The family of functions {POLY(g, s)} is clearly in
NP. Andreev [2] showed that for s=(1/2)n"8/)In n—1, the monotone complexity



COMPLEXITY OF BOOLEAN FUNCTIONS 17

of POLY (g, s) satisfies

172 §
L*(POLY(g,5)) = (m] ’

so that for s=(1/2)n'4/yIn n—1 Andreev obtains
L*(POLY (g, $)) = exp (2(n*/3/}1n n)).
In this section we show that for s=(1/2) Vq¢/In g,
L*(POLY (g, 5)) = ¢%®,
so that for s=(1/2) V¢/In ¢ we have
L*(POLY (g, 5)) = exp (2(V ¢ In q)) = exp (Q(1n"*VIn n)).

For fixed s we can show that every monotone circnit computing POLY (g, 5) has
Q(4*) AND gates.

Although Andreev’s results were proved without using the lattice framework,
we get better results by defining an appropriate lattice following Razborov’s method.
Our treatment here 1s analogous to the one given in Section 3.

4.1. The polynomial lattice

Recall that U=GF(g) and V=GF(g). Let /=1 and r be parameters to
be chosen later. We use the same definition of closed sets as that of section 3.1
(except for the technicality mentioned there). Given a collection A of subsets of
UXV, define [4] by [4]={G=(U,V, E): E contains some FcAd}. Let &)=
={FCUXV:|F|=i}. Define the lattice K(g, r,{) by K(g,r, )={[A]: 4 is a closed
subset of £(/)}. The following claim is straightforward to verify.

Lemma 4.1. K(q, r, ) is a legitimate lattice with lattice operations 1 and 1 given by
[A1L[Bl=[(AUB)*] and [A]M[B]=[ANB].

4.2. Combinatorial lemmas

We will use the following combinatorial lemmas to prove our lower bounds
for the function POLY (g, s).

Lemma 4.2. Let G=(U,V,E) be a random bipartite graph, in which each edge
appears independently with probability 1—s. Suppose ACE(} and A F. Then

Pr[F is contained in E and no set in A is contained in E]=(1—(1— )"} = (el

Proof. A+ F means that there are F;, Fy, ..., F,¢ 4 satisfying Fy, Fy, ..., F,I- F.
Hence

Pr[F is contained in E and no set in A4 is contained in E] = PrlViF, § E|FC E]

— [[ PrlF,  E|FS E],
i=1

2*
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where the last equality holds since, by the definition of +, the events {F, & E|FC E}
are independent. But

PrlF, L EIFS E]l=1-(1—glfi~Fl =1-(1—¢),
and we are done. ||
Lemma 4.3, Let G be as in Lemuma 4.1, and suppose CS E(). Then
PrGElC™1—-[CT] = 27" (1 —(1 —e)!) = 2¢' (el

Proof. Consider the closure algorithm for going from C to C*. By Lemma 3.5, the
algorithm terminates in at most 2¢! iterations. The proof of Lemma 3.7, using Lemma
4.2 in place of Lemma 3.6, gives the required bound. [}

4.3. Lower bounds for the polynomial problem

In this subsection, we give our lower bounds for POLY (g, s}, the function
defined in the beginning of this section. Recall the lattice K(g, , [) defined in sub-
section 4.1.

Theorem 4.4. Let K=K(q,r, 1), where [=s and r=q/3+1. Set f=POLY(q,s).

]hen
Q(f’ 1;) = min ( ) / 4 4 J ( 2 ]
6 F *1 ¥ 28 ln q

Proof. Let r=g(f, K). By definition of ¢(/, K), there are M, M,, N;, ..., M,, N6K
satisfying

@.1) AN S MU U 6 (M;, N)
i=1

and

42) M S AU U 6,(M,, N).

Set M=[A], M;=[A;], and N;=[B;], where A4, 4;, and B; are closed subsets of
&(1). The proof is divided into two cases, depending on M.

Case 1. M is not the set of all graphs.

For a polynomial p over GF(g), the graph corresponding to p is defined to be
{(, p(»): i€U}. Using (4.1), we will show that 7 must be large using the following
two claims.

Claim 1. M contains at most one-half of the q* graphs corresponding to polynomials of
degree at most s— 1.

Claim 2. Each 6-(M;, N;) contains at most 3¢*~10+D2(p— NI+ of the graphs
corresponding to polynomials of degree at most s—1.

Proof of Claim 1. Notice that, since M is not the set of all graphs, every FCA has
cardinality at least 1. By Corollary 3.3, the set 4 has at most (r— 1)* minimal elements
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of cardinality k. Each of these is contained in either precisely O or precisely g*—*
graphs corresponding to polynomials of degree at most s— 1. The total number of
such polynomial graphs contained in M is thus at most

Proof of Claim 2. This is analogous to the proof of Claim 2 in the proof of Lemma
38. 1

From these two claims we obtain

N i[ q )r(l+1)/m l( p }3/2
6 \r—1 6 \r—1J) °

Case 2. M is the set of all graphs.

IV

I

as needed.

Using (4.2), we have
!
{all graphs} S A(NHU U 5, (M;, N).
i=1

Notice that J,(M;, N)=[CH—[C,], where C;=A4;UB;. Let G be a random
bipartite graph, with each edge appearing independently with probability 1—e. It
is easy to see that

PriGed(f)] = ¢°(1—¢)! = g™,
so by choosing e=(slng+In 2)/g=(2s51ln gq)/q, this probability is at most 1/2.
Now by Lemma 4.3,

Pr{Ge[CH—IC] = 2 (ely.

Thus we have

1= %—f— t(2r' (ely),

TSI
4r' \el) — 4" \2s%Ingq) °

Thus Case 2 is finished, and the proof of the theorem is complete. ]

which means that

li

As an immediate consequence of the last theorem, we obtain the following.

Corollary 4.5. For s=1/2Vq/In g, we have
L*(POLY(q, 5)) = g9,
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Proof. Take r=[4sIn g], and apply Theorem 4.4 and Theorem 2.1. |
For fixed s we can prove the following.

Theorem 4.6. For fixed s, every monotone circuit computing POLY (g, 5) must have
Q(g*) AND gates.

Proof. Choose /=s and r=10s, and then use the methods of subsection 3.5
(Theorem 3.16). We omit the details. [

5. Other Boolean functions

The known reductions of the clique function to several other NP-complete
functions are actually monotone reductions. Therefore the lower bounds for the
monotone circuit complexity of CLIQUE(m, s) supply exponential lower bounds
for other Boolean functions. We list below a few simple examples.

Let fand g be two monotone Boolean functions of m and »n variables respec-
tively. The function f is a monotone projection of g (see Valiant [17] and Skyum and
Valiant [15]) iff there exist oy, 0y, ..., ,€{0, 1}U{xy, x,, ..., X}, such that f=
=g(oy, 6, ..., ,). Clearly, if f is a monotone projection of g, then L*(f)==L"*(g),
as a lower bound for fimplies a lower bound for g.

Let HAM () denote the monotornie function of [};f] Boolean variables repre-

senting a graph on m vertices, whose value is 1 iff the graph contains a Hamiltonian
circuit. The results of Valiant {17] imply that, for I=s=m, the function
CLIQUE(#, 5) is a monotone projection of HAM(m"), for some constant k. In
fact, we can show that CLIQUE(n, s) is a monotone projection of HAM (25#1%).
Therefore, by Theorem 3.9, the monotone circuit complexity of HAM(®m) is
exp (Q(nM¢/(log m)'*)).

Let SAT (1) denote the monotone function of 2m® variables xyp, ..oy X F11ae- -
eevs Vo, Whose value is 1 iff there is an assignment zq, ..., z,€{0, 1} such that the
formula

>

V [0 2)V (A )]

i=1

il

is satisfied. It is easy to show that, for 1=s=m, the function CLIQUE(m, s) is a
monotone projection of SAT(5m?). Thus, by Theorem 3.9, the monotone circuit
complexity of SAT (m) is exp (Q(n"/%/(log m)'13)).

Let G=(V, E) be an undirecied graph. A set of vertices UCV is a vertex
cover of G if for each edge {7, /} of F, either i€U or jeU. Let VC(m, k) denote the
monotone function of (’g] Boolean variables representing a graph G on m vertices,

whose value is 1 iff G does not have a vertex cover of cardinality k.
Proposition 5.1. For k=m— l% (m/flog m)'2/3J, the monotone circuit complexity of
VC(m, k) is exp (2((m/log m)'?)).

Proof. Given a function f of n variables, its dual (denoted by f*) is the function of
n variables defined by f*(xy, Xo, ..., x,)= 1f(T1xy, 71Xy, ..., 71x,). If fis a mono-
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tone function, then its dual f* is also monotone, and DeMorgan’s laws imply that
L*(f)=L*(f*). Notice that the dual of VC(m, k) is CLIQUE(m; m—k), since G
has a vertex cover of cardinality k iff its complement G has a clique of cardinality
m—k. The result now follows from Theorem 3.9. |

Let D=(V, E) be a directed graph. A set of vertices USV is a feedback
vertex cover of D if each directed cycle of D contains some vertexin U. A set of edges
FC Eis a feedback edge cover if each directed cycle of D contains some edge from F.
Put n=m(m—1) and let x;, x,, ..., x, be n Boolean variables representing the edges
of a directed graph D on m vertices. Let FV(in, k) denote the monotone function of
X135 Xa, ..., X, whose value is 1 iff D does not have a feedback vertex cover of cardina-
lity k. Similarly, let FE(m, k) denote the monotone function of x,, x,, ..., x, whose
value is 1 if D does not have a feedback edge cover of cardinality k.

Proposition 5.2. For k=m— —llg (mflog nz)2/3J, the monotone circuit complexities of
EV(m, k) and FE(m, k) are exp (Q((m/log m)*/3)).

Proof. The standard reductions of Vertex Cover to Feedback Vertex Cover and to
Feedback Edge Cover (see for example [1]) are monotone and linear. Thus using
Proposition 5.1 the proof is complete. |

There are several other monotone reductions of the clique problem to various
NP-comiplete problems which yield exponential lower bounds for the monotone
circuit complexities of the corresponding Boolean functions. As observed by P.
Frankl, one can also deduce such lower bounds from the proofs of Lemma 3.8
and Theorem 3.9. Indeed, these supply lower bounds for any monotone function

fof ['g} variables representing G=(V, E), whose value is 1 if G is an s-clique, is

0 if G 1s a complete (s—1)-partite graph, and is arbitrary otherwise. For example,
if COLOR(m, s) is the function that is 1 iff G is not s-colorable, then for s=
=[(m/(8 log m))m,] the monotone circuit complexity of COLOR(m, s) is at least
exp (Q((m/log m)1#)).

Razborov [13] obtained an m®?U°¢™ lower bound for the monotone circuit
complexity of the perfect matching function PM (). This is the Boolean function of
n=m? variables representing the edges of a bipartite graph G=(U, ¥, E) such that
|U|=V|=m, whose value is 1 iff G contains a perfect matching. The nonmonotone
circuit complexity of PM(m) is actually polynomial, using for example the Hopcroft
and Karp [7] matching algorithm. So far, we have not been able to improve the
m@deem™ lower bound for the monotone circuit complexity of PM(m). It is worth
noting that Perfect Matching has a monotone, linear reduction to various other
problems, including Network Flow and Local Connectivity between two vertices in
a directed graph. Consequently one obtains m®®&m lower bounds for the monotone
circuit complexities of the corresponding functions.
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